208. Polar versus Steric Effects in the Solvolysis of 6endo-substituted 2endo-Norbornyl p-Toluenesulfonates

Norbornanes1), Part 8

by Cyril A. Grob, Bettina Günther and Reinhard Hanreich

Institut für Organische Chemie der Universität Basel, St. Johanns-Ring 19, CH-4056 Basel

(12.VIII.82)

Summary

The solvolysis rates and products of the 6endo-R-substituted 2endo-norbornyl toluenesulfonates 6a-6i have been determined. The rates of 6a-6g correlate with the inductive constants σ_1^q of the 6endo-substituents and are not related to the size of the latter. It is therefore concluded that polar rather than steric effects control the exo/endo-rate ratios of norbornyl sulfonates. Products are derived mainly from rearranged 6exo-R-norbornyl cations when the substituent is an electron donor and from unrearranged 6endo-R-substituted cations when the substituent is an electron acceptor.

In preceding articles [1-3] the solvolysis rates and products of 6-substituted 2exoand 2endo-norbornyl toluenesulfonates 1-3 were reported. The polar effects of the substituents R were shown to be much more strongly transmitted in the 2exosulfonates 1 and 2 than in the 2endo-sulfonates 3. In the case of 1 and 3 differential transmittance resulted in k_1/k_3 ratios which differed widely with the 6exo-substituent and decreased by a factor of more than 10³ as the electron-attracting power of R increased [1]. It was therefore concluded that electron donating substituents – relative to the incipient cationic center C(2) – lead to bridging of C(2) by the pentacoordinate C(6)-atom with concomitant transfer of a substancial part of the positive charge in the incipient ion pair 4 to the substituent R. In contrast, electronattracting substituents reduce or prevent bridging in the resulting ion pair 5.

Graded 1,3-bridging in 2-norbornyl cations accounts not only for variable k_1/k_3 ratios but also for the formation of 2exo-norbornanols as the only substitution products when R is an electron donor. It also explains the formation of 2exo- and 2endo-norbornanols when R is an electron acceptor²). Evidently, the bridged

¹⁾ The IUPAC name of 'norbornane' is 8,9,10-trinorbornane.

²) The *p*-toluenesulfonates 1, R = F and CN, yield 57 and 30%, respectively, of the corresponding 2*endo*-norbornanols ([1] and unpublished results).

2-norbornyl cation 4 is accessible to nucleophiles on the unshielded *exo*-side only, whereas the unbridged cation 5 is attacked on both the *exo*- and *endo*-side.

This conclusion is at variance with *Brown*'s steric explanation for the high exo/endo-rate ratio³) and the exclusive formation of 2exo-substitution products observed in the solvolysis of 6-unsubstituted 2exo- and 2endo-norbornyl *p*-toluenesulfonates 1 and 3 (R=H), respectively. According to *Brown*⁴) these findings reflect steric hindrance to ionization of the *endo*-epimer 3 and to favored *exo*-attack by nucleo-philes at C(2) of the resultant unbridged, *i.e.* 'classical' 2-norbornyl cation.

Though rendered unlikely by the aforementioned investigation of the 6-substituted norbornyl *p*-toluenesulfonates $1-3^5$) Brown's hypothesis could be defended on the grounds that a strong polar effect is superposed on a steric effect. It was therefore desirable to test the concept of steric hindrance to ionization of *endo*norbornyl sulfonates by investigating some 6*endo*-substituted 2*endo*-sulfonates **6**. If a steric effect were the primary cause of the k_1/k_3 ratio of 425 for $R = H [1]^6$), the latter should increase drastically as the 6*endo*-H-atom is replaced first by CH₃ and then by t-C₄H₉, because these groups should block the *endo*-ionization path more effectively than a H-atom. On the other hand, the rate constants for the series of 6*endo*-substituted 2*endo*-sulfonates **6a-6g** should correlate with the inductive constants of R [5] if polar rather than steric effects dominated.

Results. The preparation of the 6endo-R-2endo-norbornyl p-toluenesulfonates 6a-6i and their hydrolysis in dioxane/water 7:3 are described in the accompanying contribution [6]. The products and their yields are summarized in *Table 1* and compared with those reported for the 6exo-R-2endo-sulfonates 3a-3i. As a rule the same kind of products 7-20 were obtained from 3 and 6, albeit in different yields (see *Discussion*).

³) In 80 vol.-% ethanol k_1/k_3 for R = H is 425 at 70° [1].

⁴⁾ For a comprehensive review of *Brown*'s hypothesis see [4].

⁵⁾ For a review of this work see [3].

⁶) For R = H 1 and 3 equal 2 and 6, respectively.

The rate constants for the reaction of 6a-6i in ethanol/water 8:2 (v/v) were determined by the conductometric method [1] and are listed in *Table 2*.

Discussion. Introducing CH₃ and t-C₄H₉ in the 2endo-6endo-series **6** reduces the rate by factors of 7 and 4, respectively, in the 2exo-6endo-series **2** [1], where steric interference by R must be negligible, by factors of 1.4 and 3.3, respectively. Hence, there is no significant connection between the bulk of the substituent at C(6) and the rate. There is, however, a small configurational effect since 6exo-substituents lead to somewhat higher rates than 6endo-substituents, as the k_3/k_6 ratios in Table 3 show⁷). A similar configurational effect of the substituent at C(6) was observed for the sulfonates **1** and **2**, where k_1/k_2 was also slightly larger than **1** [2]. It was there-

Table 1. Yield of products (in %) from the reaction of 6endo-substituted 2endo-norbornyl p-toluenesulfonates 6 in 70 vol.% dioxane (in brackets the yields from the 6exo-substituted 2endo-norbornyl p-toluenesulfonates 3 [1])

6 (or	3)R	Products					
a	Н	7 93	20 7				
b	CH ₃	7 36(44)	8 19(2)	9 45(54)			
c	$t-C_4H_9$	7 23(27)	84(-)	9 20(23)	10 2(1)	11 51(49)	
d	OCOCH ₃	7 - (53)	864(-)	12 - (37)	1317(-)	14 15(10) ^a)	
e	F	7 7(87)	8 63(-)	12 - (4)	13 10(2)	16 ^b) $10(-)$ 17 - (7) ^a)	
f	Br	12 ^c) 13(9)	13 2(-)	16 ^b) 75(81)	^a)		
g	CN ^d)	7 4(83)	8 76(1)	12 1(12)	13 ^e)	17 2(3)	19 4(-)
h	OH	16 96a)(100)				
i	OCH ₃	84()	16 ^a) 92(100))			

^a) Beside unidentified material. ^b) The precursors of 16 are probably *6endo*-fluoro- or *6endo*-bromo-2*exo*-norbornanol which fragment to 16. ^c) Identified as the 'nortricyclanol' 18. ^d) Unpublished results. ^e) Traces.

⁷) The relatively high k_3/k_6 ratio of 18 for the cyanonorbornyl *p*-toluenesulfonates will be discussed in a later paper.

R	Т	k	H^{\neq}	<i>S</i> ≠
······	[°]	[s ⁻¹]	[kcal/mol]	[cal/mol · degree]
6a H	70.00 ^a)	$8.42 \cdot 10^{-5}$	23.9	- 7.9
	79.12	$2.41 \cdot 10^{-4}$		
	89.77	5.96 - 10-4		
	99.20	$1.42 \cdot 10^{-3}$		
	140.00 ^a)	$3.00 \cdot 10^{-2}$		
6b CH3	70.00ª)	$1.18 \cdot 10^{-5}$	25.0	- 8.5
	99.80	$2.39 \cdot 10^{-4}$		
	110.00	6.00 · 10 ⁻⁴		
	119.86	$1.39 \cdot 10^{-3}$		
	140.00ª)	$6.88 \cdot 10^{-3}$		
6c t-C ₄ H ₉	70.00ª)	$2.04 \cdot 10^{-5}$	24.4	- 9.2
	100.00	$3.99 \cdot 10^{-4}$		
	110.00	9.39 · 10 - 4		
	120.00	$2.23 \cdot 10^{-3}$		
	140.00ª)	$1.05 \cdot 10^{-2}$		
6d OCOCH ₃	70.00ª)	$1.65 \cdot 10^{-7}$	27.3	- 10.3
2	119.99	$3.04 \cdot 10^{-5}$		
	126.72	$5.72 \cdot 10^{-5}$		
	134.71	$1.11 \cdot 10^{-4}$		
	140.00ª)	$1.74 \cdot 10^{-4}$		
6e F	70.00 ^a)	$3.35 \cdot 10^{-7}$	23.81	- 19.07
	125.31	$4.96 \cdot 10^{-5}$	20.01	17107
	130.33	$7.28 \cdot 10^{-5}$		
	135.33	$1.06 \cdot 10^{-4}$		
	140.00 ^a)	$1.49 \cdot 10^{-4}$		
6f Br	70.00ª)	3 10 - 10 - 8	26.8	- 15 2
	125.00	8 31 . 10 - 6	20.0	15.2
	135.00	$1.79 \cdot 10^{-5}$		
	139.60	$2.92 \cdot 10^{-5}$		
	140.00 ^a)	$2.92 \cdot 10^{-5}$		
6g CN	140.00	5.99 · 10 ⁻⁶		
6h OH	54.81	$1.45 \cdot 10^{-4}$	23.5	-45
	64.77	$4.26 \cdot 10^{-4}$	-010	
	70.00ª)	$7.46 \cdot 10^{-4}$		
	74.86	$1.23 \cdot 10^{-3}$		
	140.00ª)	$3.09 \cdot 10^{-1}$		
6i OCH3	70.00ª)	4.68 · 10 ⁻⁶	25.2	- 9.9
-	99.91	9.75 · 10 ⁵		
	109.97	$2.47 \cdot 10^{-4}$		
	120.05	5.84 · 10-4		
	140.00ª)	$2.92 \cdot 10^{-2}$		

Table 2. First-order solvolysis rate constants k for 10^{-3} M 6endo-R-2endo-norbornyl p-toluenesulfonates 6 in 80 vol.-% ethanol

^a) Extrapolated.

fore concluded that longitudinal polarizability of the R, C(6)-bond, as in 21 (arrow a)), is more effective than transverse polarizability (arrow b)).

However, a further factor appears to be involved because the k_3/k_6 ratio for t-C₄H₉, namely 1.3, is smaller than that for CH₃, *i.e.* 5.1 (*Table 3*). This suggests that *endo*-crowding in **6c**, which is far less pronounced in **6b**, leads to a small steric acceleration. It is noteworthy that according to spacefilling models *endo*-crowding in **6c** does not prevent rotation around the C(6), (t-C₄H₉)-bond. This conclusion is supported by the ¹H-NMR. spectrum of **6c**, in which the nine methyl protons give rise to a single sharp signal at 0.98 ppm [6].

The k_2/k_6 ratios (*Table 3*) also indicate that polar rather than steric effects control *exo/endo*-rate ratios, for these show the same trend as the k_1/k_3 ratios reported earlier [1] in that they decrease from 1667 (for t-C₄H₉) to 469 (for CH₃) to 425 (for H) to 1.4 (for F), *i.e.* as the electron-attracting power of R increases. The large k_2/k_6 ratio for R=OCOCH₃ of 337 is due to the accelerative anchimeric effect of this nucleophilic substituent in the sulfonate 2d which leads to cyclization to the cation 15 [2]. The enhanced k_2/k_6 ratio of 59 for R=OCH₃ is probably due to the accelerative hyperconjugative effect of this n-electron donor which, for stereoelectronic reasons, is more effective in 2i than in 6i (see below).

Since steric effects are small or negligible in the 2endo-6endo-series 6 it is not surprising that the substituents R control rates predominantly by their inductive

	R	k ^{70°}	$k_{\rm rel}^{140^\circ}$	k3/k6	k2/k6
6a	Н	1	1	1	425
6b	CH ₃	0.14	0.18	5.1	469
6c	$t-C_4H_9$	0.24	0.28	1.3	1667
6d	OCOCH ₃	$2.0 \cdot 10^{-3}$	$4.6 \cdot 10^{-3}$	7.3	337
6e	F	$4.0 \cdot 10^{-3}$	$5.0 \cdot 10^{-3}$	4.5	1.4
6f	Br	$3.7 \cdot 10^{-3}$	$7.7 \cdot 10^{-4}$	13	6.3
6g	CN	_	$1.6 \cdot 10^{-4}$	18 ^a)	11ª)
6h	OH	8.9	8.3	0.134	2.7
6i	OCH ₃	$5.6 \cdot 10^{-2}$	$7.7 \cdot 10^{-2}$	9.2	59
a) At	140°.				

Table 3. Relative rate constants for 6 at 70 and 140° and k2/k6 and k3/k6 rate ratios at 70°

effects. This follows from the plot of log k for 6a-6g (at 140°) against the respective inductive substituent constants σ_1^a [5] (Fig.). Not included in the regression are the points for OH and OCH₃ which give rise to accelerations of 1100 and 14, respectively. It is now well-established that these n-electron donors exert enhanced polar effects in k_c processes [7]⁸) even when the nucleofugal group has a gauche orientation with respect to the hyperconjugating C, C-bond [1][8], as shown for 6h in 22. This is confirmed by the practically quantitative fragmentation of 6h and 6i (Table 1). The fact that the hydroxy sulfonate 6h reacts more than 10^2 times faster than the methoxy sulfonate 6i (Table 3) can be attributed to an intramolecular H-bond (see 23)⁹) which should assist ionization in the manner of a protic solvent.

The correlation of the points for 6a-6g in the plot (Fig.) is not as good as the ones for 1-3 [1][2]. This is not surprising since the rate constants for 6a-6f were extrapolated to 140° in order to include the constant for the much less reactive cyano sulfonate 6g. Furthermore, secondary steric effects, such as steric hindrance to solvation, are also bound to play a role. The reaction constant ρ for 6 is -0.94 and hence somewhat larger than for the 2*endo*-6*exo*-series 3 ($\rho = -0.78$), but considerably smaller than for the 2*exo*-6*exo*-series 1 ($\rho = -2.0$) [1] and the 2*exo*-6*endo*-series 2 ($\rho = -1.75$) [2].

The low ρ value for the series 3 [1] indicated a relatively small inductive interaction between C(6) and C(2) in the transition state for the ionization to the ion pair 24. The slightly higher ρ value for 6 then indicates a somewhat larger inter-

Figure. Plot of log k for **6a-6g** in 80 vol.% ethanol at 140° vs. inductive substituent constants for R (OH and OCH₃ not included in the regression)

⁸) *I.e.* a carbocation is formed in the transition state without nucleophilic solvent assistance.

⁹⁾ As evidenced by the dilution-independent broad band at 3350 cm^{-1} .

action in going to the ion pair 27, due probably to the proximity of R and the reaction center and the concomitant exclusion of solvent. However, C-bridging should be weak in the *endo*-ion pairs 24 and 27 and hence justify the use of conventional formulae [3].

The products from **6b** and **6c** (R=CH₃ and *t*-C₄H₉, respectively) are derived mainly from the rearranged cations **26** and **28** (*Table 1* and *Scheme*). Thus, the precursors of the norbornanols **7b** and **7c** are the *exo*-R cations **28b** and **28c**, respectively, which arise from the cations **27** by a *Wagner-Meerwein* shift. A $C(6) \rightarrow C(2)$ *endo*-hydride shift converts **28** to the tertiary carbenium ions **26**, the precursors of **9-11**. In contrast, the products **8** and **13** from the sulfonates **6d-6g** are derived mainly from the unrearranged cations **27**, confirming that -I-substituents retard rearrangement [2].

It is noteworthy that the same mixture of products should arise from the stereoisomeric *p*-toluenesulfonates 3 and 6 if the resultant cations were free and rearranged faster than they reacted with the solvent. As *Table 1* shows this is not the case, with the possible exception of the *t*-butyl-substituted sulfonates 3c and 6c. It is also worth mentioning that the same mixture of products should result from the sulfonates 3 and 6 if these ionized to the cations 24 and 27, respectively, which were then converted to the respective 'nonclassical' cations of the type 29 and 30 proposed by *Winstein* [9]; for these are enantiomers and should therefore yield identical products. It is evident from *Table 1* that this is not so, except in the case of

3a and 6a (R=H) where a symmetrical cation 29, R=H, would be formed. This possibility was, however, rejected for other reasons [1][3].

This work was supported by the Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung.

REFERENCES

- [1] W. Fischer, C.A. Grob, R. Hanreich, G. von Sprecher & A. Waldner, Helv. Chim. Acta 64, 2298 (1981).
- [2] C.A. Grob, B. Günther & R. Hanreich, Helv. Chim. Acta 64, 2312 (1981).
- [3] C.A. Grob, Angew. Chem. 94, 87 (1982): ibid., Int. Ed. 21, 87 (1982).
- [4] H. C. Brown, 'The Nonclassical Ion Problem', with comments by P. von R. Schleyer, Plenum Press, New York 1977.
- [5] C.A. Grob, B. Schaub & M.G. Schlageter, Helv. Chim. Acta 63, 57 (1980).
- [6] C.A. Grob, B. Günther & R. Hanreich, Helv. Chim. Acta 65, 2118 (1982).
- [7] C.A. Grob & B. Schaub, Helv. Chim. Acta 65, 1720 (1982).
- [8] C.A. Grob, M. Bolleter & W. Kunz, Angew. Chem. 92, 734 (1980); ibid., Int. Ed. 19, 734 (1980).
- [9] S. Winstein & D. Trifan, J. Am. Chem. Soc. 74, 1147, 1154 (1952).