208. Polar versus Steric Effects in the Solvolysis of 6endo-substituted 2endo-**Norbornyl p-Toluenesulfonates**

Norbornanes'). Part 8

by **Cyril A. Grob, Bettina Giinther** and **Reinhard Hanreich**

Institut fur Organische Chemie der Universitat Basel, St. Johanns-Ring 19, CH-4056 Basel

(12.VIII. 82)

Summary

The solvolysis rates and products of the 6endo-R-substituted 2endo-norbornyl toluenesulfonates **6a-6i** have been determined. The rates of **6a-6g** correlate with the inductive constants σ^q of the 6endo-substituents and are not related to the size of the latter. It is therefore concluded that polar rather than steric effects control the exo/endo-rate ratios of norbornyl sulfonates. Products are derived mainly from rearranged 6exo-R-norbornyl cations when the substituent is an electron donor and from unrearranged 6endo-R-substituted cations when the substituent is an electron acceptor.

In preceding articles [**1-31** the solvolysis rates and products of 6-substituted 2exoand 2endo-norbornyl toluenesulfonates **1-3** were reported. The polar effects of the substituents R were shown to be much more strongly transmitted in the 2 exosulfonates **1** and **2** than in the 2endo-sulfonates **3.** In the case of **1** and **3** differential transmittance resulted in k_1/k_3 ratios which differed widely with the 6exo-substituent and decreased by a factor of more than **lo3** as the electron-attracting power of R increased [I]. It was therefore concluded that electron donating substituents relative to the incipient cationic center $C(2)$ - lead to bridging of $C(2)$ by the pentacoordinate $C(6)$ -atom with concomitant transfer of a substancial part of the positive charge in the incipient ion pair **4** to the substituent R. In contrast, electronattracting substituents reduce or prevent bridging in the resulting ion pair **5.**

Graded 1,3-bridging in 2-norbornyl cations accounts not only for variable k_1/k_3 ratios but also for the formation of $2exo$ -norbornanols as the only substitution products when R is an electron donor. It also explains the formation of 2exo- and 2 endo-norbornanols when R is an electron acceptor²). Evidently, the bridged

l) The IUPAC name of 'norbornane' is 8,9,10-trinorbornane.

 $2)$ The p-toluenesulfonates **1**, $R = F$ and CN, yield 57 and 30%, respectively, of the corresponding 2endo-norbornanols ([1] and unpublished results).

2-norbornyl cation **4** is accessible to nucleophiles on the unshielded exo-side only, whereas the unbridged cation *5* is attacked on both the exo- and endo-side.

This conclusion is at variance with Brown's steric explanation for the high exo/ endo-rate ratio³) and the exclusive formation of $2exo$ -substitution products observed in the solvolysis of 6-unsubstituted $2exo$ - and $2endo$ -norbornyl p-toluenesulfonates **1** and **3** $(R = H)$, respectively. According to *Brown*⁴) these findings reflect steric hindrance to ionization of the endo-epimer **3** and to favored exo-attack by nucleophiles at *C* (2) of the resultant unbridged, i.e. 'classical' 2-norbornyl cation.

Though rendered unlikely by the aforementioned investigation of the 6-substituted norbornyl p-toluenesulfonates **1-35)** Brown's hypothesis could be defended on the grounds that a strong polar effect is superposed on a steric effect. It was therefore desirable to test the concept of steric hindrance to ionization of endonorbornyl sulfonates by investigating some 6endo-substituted 2endo-sulfonates **6.** If a steric effect were the primary cause of the k_1/k_3 ratio of 425 for R = H $[1]^{6}$), the latter should increase drastically as the $6endo$ -H-atom is replaced first by CH₃ and then by t -C₄H₉, because these groups should block the *endo*-ionization path more effectively than a H-atom. On the other hand, the rate constants for the series of 6endo-substituted 2endo-sulfonates **6a-6g** should correlate with the inductive constants of R [5] if polar rather than steric effects dominated.

Results. The preparation of the 6endo-R-2endo-norbornyl p-toluenesulfonates **6a-6i** and their hydrolysis in dioxane/water 7 : 3 are described in the accompanying contribution [6]. The products and their yields are summarized in Table *I* and compared with those reported for the 6exo-R-2endo-sulfonates **3a-3i.** As a rule the same kind of products **7-20** were obtained from **3** and *6,* albeit in different yields (see Discussion).

³⁾ In 80 vol.-% ethanol k_1/k_3 for R = H is 425 at 70° [1].

^{4,} For a comprehensive review of *Brown's* hypothesis see **[4].**

^{5,} For a review of this **work** see **[3].**

^{6,} For $R = H 1$ and 3 equal 2 and 6, respectively.

The rate constants for the reaction of $6a-6i$ in ethanol/water $8:2 (v/v)$ were determined by the conductometric method **[I]** and are listed in Table 2.

Discussion. Introducing CH, and t-C,H, in the 2endo-6endo-series **6** reduces the rate by factors of 7 and 4, respectively, in the 2exo-6endo-series **2** [l], where steric interference by R must be negligible, by factors of 1.4 and **3.3,** respectively. Hence, there is no significant connection between the bulk of the substituent at $C(6)$ and the rate. There is, however, a small configurational effect since 6exo-substituents lead to somewhat higher rates than 6endo-substituents, as the *k3/k6* ratios in Table *3* show⁷). A similar configurational effect of the substituent at $C(6)$ was observed for the sulfonates 1 and 2, where k_1/k_2 was also slightly larger than 1 [2]. It was there-

Table 1. Yield of products (in %) from the reaction of 6endo-substituted 2endo-norbornyl p-toluenesulfonates *6* in 70 *vol.-%* dioxane (in brackets the yields from the 6exo-substituted **2endo-norbornylp-toluenesulfonates** $3 {1}$

6 (or 3) R		Products					
\mathbf{a}	н	793	20 7				
b	CH ₃	736(44)	819(2)	945(54)			
$\bf c$	t- C_4H_9	723(27)	$84(-)$	920(23)	102(1)	1151(49)	
d	OCOCH ₃	$7 - (53)$	$864(-)$	$12 - (37)$	$1317(-)$	14 $15(10)^a$)	
\mathbf{e}	F	77(87)	$863(-)$	$12 - (4)$	1310(2)	16 ^b) $10(-)$ 17 - (7) ^a)	
f	Br	12°) 13(9)	$132(-)$	$16b$) 75(81) ^a)			
g	CN ^d	74(83)	876(1)	121(12)	$13e$)	172(3)	$194(-)$
h	OН	$16\,96^{\rm a})$ (100)					
i	OCH ₃	$84(-)$	$16a$) 92(100)				

^a) Beside unidentified material. ^b) The precursors of 16 are probably 6endo-fluoro- or 6endo-bromo-2exonorbornanol which fragment to 16. ^c) Identified as the 'nortricyclanol' 18. ^d) Unpublished results. ^e) Traces.

⁷) The relatively high k_3/k_6 ratio of 18 for the cyanonorbornyl p-toluenesulfonates will be discussed in a later paper.

R	T	k	H^{\neq}	S^+
	[°]	$[s^{-1}]$	[kcal/mol]	[cal/mol·degree]
6a H	$70.00a$)	$8.42 \cdot 10^{-5}$	23.9	-7.9
	79.12	$2.41 \cdot 10^{-4}$		
	89.77	$5.96 \cdot 10^{-4}$		
	99.20	$1.42 \cdot 10^{-3}$		
	$140,00^a$)	$3.00 \cdot 10^{-2}$		
$6b$ CH ₃	$70.00a$)	$1.18 \cdot 10^{-5}$	25.0	-8.5
	99.80	$2.39 \cdot 10^{-4}$		
	110.00	$6.00 \cdot 10^{-4}$		
	119,86	$1.39 \cdot 10^{-3}$		
	140.00^a)	$6.88 \cdot 10^{-3}$		
6c t -C ₄ H ₉	$70.00a$)	$2.04 \cdot 10^{-5}$	24.4	-9.2
	100.00	$3.99 \cdot 10^{-4}$		
	110.00	$9.39 \cdot 10^{-4}$		
	120,00	$2.23 \cdot 10^{-3}$		
	$140.00a$)	$1.05 \cdot 10^{-2}$		
6d OCOCH ₃	$70.00a$)	$1.65 \cdot 10^{-7}$	27,3	-10.3
	119.99	$3.04 \cdot 10^{-5}$		
	126.72	$5.72 \cdot 10^{-5}$		
	134.71	$1.11 \cdot 10^{-4}$		
	140.00^a)	$1.74 \cdot 10^{-4}$		
6e F	$70.00a$)	$3.35 \cdot 10^{-7}$	23.81	-19.07
	125.31	$4.96 \cdot 10^{-5}$		
	130.33	$7.28 \cdot 10^{-5}$		
	135,33	$1.06 \cdot 10^{-4}$		
	$140.00a$)	$1.49 \cdot 10^{-4}$		
6f Br	$70.00a$)	$3.10 \cdot 10^{-8}$	26.8	-15.2
	125.00	$8.31 \cdot 10^{-6}$		
	135.00	$1.79 \cdot 10^{-5}$		
	139.60	$2.92 \cdot 10^{-5}$		
	140.00^a	$2.90 \cdot 10^{-5}$		
6g CN	140.00	$5.99 \cdot 10^{-6}$		
6h OH	54.81	$1.45 \cdot 10^{-4}$	23.5	-4.5
	64.77	$4.26 \cdot 10^{-4}$		
	70.00a)	$7.46 \cdot 10^{-4}$		
	74.86	$1.23 \cdot 10^{-3}$		
	$140.00a$)	$3.09 \cdot 10^{-1}$		
$6i$ OCH ₃	$70.00a$)	$4.68 \cdot 10^{-6}$	25.2	-9.9
	99.91	$9.75 \cdot 10^{-5}$		
	109.97	$2.47 \cdot 10^{-4}$		
	120.05	$5.84 \cdot 10^{-4}$		
	140.00^a)	$2.92 \cdot 10^{-2}$		

Table 2. *First-order solvolysis rate constants* **k** *for 10- 3~* **6endo-R-2endo-norbornyl** *p-toluenesulfonates* **6** *in 80 vol.* -% *ethanol*

^a) Extrapolated.

fore concluded that longitudinal polarizability of the R, C(6)-bond, as in **21** (arrow a)), is more effective than transverse polarizability (arrow b)).

However, a further factor appears to be involved because the k_1/k_6 ratio for t -C₄H₉, namely 1.3, is smaller than that for CH₃, *i.e.* 5.1 *(Table 3)*. This suggests that endo-crowding in **6c,** which is far less pronounced in **6b,** leads to a small steric acceleration. It is noteworthy that according to spacefilling models *endo*-crowding in 6c does not prevent rotation around the $C(6)$, $(t-C₄H₉)$ -bond. This conclusion is supported by the 'H-NMR. spectrum of **6c,** in which the nine methyl protons give rise to a single sharp signal at 0.98 ppm [6].

The k_2/k_6 ratios *(Table 3)* also indicate that polar rather than steric effects control exo/endo-rate ratios, for these show the same trend as the k_1/k_3 ratios reported earlier [1] in that they decrease from 1667 (for t -C₄H₉) to 469 (for CH₃) to 425 (for H) to 1.4 (for F), *i.e.* as the electron-attracting power of R increases. The large k_2/k_6 ratio for $R=OCOCH_3$ of 337 is due to the accelerative anchimeric effect of this nucleophilic substituent in the sulfonate **2d** which leads to cyclization to the cation 15 ^[2]. The enhanced k_2/k_6 ratio of 59 for $R = OCH_3$ is probably due to the accelerative hyperconjugative effect of this n-electron donor which, for stereoelectronic reasons, is more effective in **2i** than in **6i** (see below).

Since steric effects are small or negligible in the 2endo-6endo-series **6** it is not surprising that the substituents R control rates predominantly by their inductive

	R	$k_{\text{rel}}^{70^{\circ}}$	$k_{\rm rel}^{140^\circ}$	k_3/k_6	k_2/k_6
62	H				425
6b	CH ₃	0.14	0.18	5.1	469
6с	t -C ₄ H ₉	0.24	0.28	1.3	1667
6d	OCOCH ₃	$2.0 \cdot 10^{-3}$	$4.6 \cdot 10^{-3}$	7.3	337
6е	F	$4.0 \cdot 10^{-3}$	$5.0 \cdot 10^{-3}$	4.5	1.4
6f	Вr	$3.7 \cdot 10^{-3}$	$7.7 \cdot 10^{-4}$	13	6.3
6g	CN		$1.6 \cdot 10^{-4}$	$18a$)	$11a$)
6h	OН	8.9	8.3	0.134	2.7
6i	OCH ₁	$5.6 \cdot 10^{-2}$	$7.7 \cdot 10^{-2}$	9.2	59
	$a)$ At 140 $^{\circ}$.				

Table 3. Relative rate constants for 6 at 70 and 140° and k_2/k_6 and k_3/k_6 rate ratios at 70°

effects. This follows from the plot of $\log k$ for $6a-6g$ (at 140°) against the respective inductive substituent constants σ^{α} [5] *(Fig.)*. Not included in the regression are the points for OH and OCH₃ which give rise to accelerations of 1100 and 14, respectively. It is now well-established that these n-electron donors exert enhanced polar effects in k_c processes $[7]^8$) even when the nucleofugal group has a gauche orientation with respect to the hyperconjugating C,C-bond [1][8], as shown for **6h** in **22.** This is confirmed by the practically quantitative fragmentation of **6h** and **6i** (Table 1). The fact that the hydroxy sulfonate $6h$ reacts more than 10^2 times faster than the methoxy sulfonate **6i** (Table **3)** can be attributed to an intramolecular H-bond (see **23)9)** which should assist ionization in the manner of a protic solvent.

The correlation of the points for **6a-6g** in the plot *(Fig.)* is not as good as the ones for **1-3** [1][2]. This is not surprising since the rate constants for **6a-6f** were extrapolated to 140" in order to include the constant for the much less reactive cyano sulfonate **6g.** Furthermore, secondary steric effects, such as steric hindrance to solvation, are also bound to play a role. The reaction constant ρ for **6** is -0.94 and hence somewhat larger than for the 2endo-6exo-series **3** ($p = -0.78$), but considerably smaller than for the $2exo-6exo-series$ **1** $(\rho = -2.0)$ [1] and the $2exo-$ 6endo-series $2 (p = -1.75)$ [2].

The low ρ value for the series 3 [1] indicated a relatively small inductive interaction between $C(6)$ and $C(2)$ in the transition state for the ionization to the ion pair 24. The slightly higher ρ value for 6 then indicates a somewhat larger inter-

Figure. *Plot of log* **k** *for* **6a-6g** *in 80 vo1.-% eihanol at 140"* **vs.** *induciive suhstituent constants for R* (OH and OCH₃ not included in the regression)

^{8,} *I.e.* a carbocation is formed in the transition state without nucleophilic solvent assistance

^{9,} As evidenced by the dilution-independent broad band at 3350 cm^{-1} .

action in going to the ion pair **27,** due probably to the proximity of R and the reaction center and the concomitant exclusion of solvent. However, C-bridging should be weak in the endo-ion pairs **24** and **27** and hence justify the use of conventional formulae **[3].**

The products from **6b** and **6c** ($R = CH_3$ and $t \cdot C_4H_9$, respectively) are derived mainly from the rearranged cations **26** and **28** (Table 1 and Scheme). Thus, the precursors of the norbornanols 7b and 7c are the exo-R cations 28b and 28c, respectively, which arise from the cations **27** by a Wagner-Meerwein shift. **A** $C(6) \rightarrow C(2)$ endo-hydride shift converts 28 to the tertiary carbenium ions 26, the precursors of **9-11.** In contrast, the products **8** and **13** from the sulfonates **6d-6g** are derived mainly from the unrearranged cations **27,** confirming that -I-substituents retard rearrangement [2].

It is noteworthy that the same mixture of products should arise from the stereoisomeric p-toluenesulfonates **3** and **6** if the resultant cations were free and rearranged faster than they reacted with the solvent. **As** Table 1 shows this is not the case, with the possible exception of the t-butyl-substituted sulfonates **3 c** and **6c.** It is also worth mentioning that the same mixture of products should result from the sulfonates **3** and **6** if these ionized to the cations **24** and **27,** respectively, which were then converted to the respective 'nonclassical' cations of the type **29** and **30** proposed by Winstein **[9];** for these are enantiomers and should therefore yield identical products, It is evident from Table *1* that this is not so, except in the case of

3a and 6a $(R = H)$ where a symmetrical cation **29**, $R = H$, would be formed. This possibility was, however, rejected for other reasons **[I] [3].**

This work **was** supported by the *Schweizerischer Nationalfonds zur Forderung der wissenschufflichen Forschung.*

REFERENCES

- **[I]** *W Fischer, C.A. Grob, R. Hunreich, G. yon Sprecher &A. Wuldner,* Helv. Chim. Acta 64, 2298 (1981).
- [2] *C.A. Grob, B. Giinther* & *R. Hunreich,* **Helv.** Chim. Acta *64,* 2312 (1981).
- **[3]** *C.A. Grob,* **Angew.** Chem. *94,* 87 (1982):ibid.,Int. Ed. *21,* 87 (1982).
- [4] *H.* C. *Brown,* 'The Nonclassical Ion Problem', with comments by P. von R. Schleyer, Plenum Press, New **York** 1977.
- [5] *C.A. Grob, B. Schuub* & *M. G. Schlugeter,* Helv. Chim. Acta 63, 57 (1980).
- [6] *C.A. Grob, B. Giinther* & *R. Hunreich,* **Helv.** Chim. Acta *65,* 2118 (1982).
- [7] *C.A. Grob* & *B. Schuub,* Helv. Chim. Acta *65,* 1720 (1982).
- [8] *C.A. Grub, M. Bolleter& W. Kunz,* Angew. Chem. *92,* 734 (1980); ibid., Int. Ed. *19,* **734** (1980).
- [9] *S. Winsfein* & *D. Trifan,* J. Am. Chem. SOC. *74,* 1147, 1154 (1952).